Counting Partitions of a Fixed Genus

نویسندگان

  • ROBERT CORI
  • GÁBOR HETYEI
چکیده

We show that, for any fixed genus g, the ordinary generating function for the genus g partitions of an n-element set into k blocks is algebraic. The proof involves showing that each such partition may be reduced in a unique way to a primitive partition and that the number of primitive partitions of a given genus is finite. We illustrate our method by finding the generating function for genus 2 partitions, after identifying all genus 2 primitive partitions, using a computer-assisted search.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting Genus One Partitions and Permutations

We prove the conjecture by M. Yip stating that counting genus one partitions by the number of their elements and blocks yields, up to a shift of indices, the same array of numbers as counting genus one rooted hypermonopoles. Our proof involves representing each genus one permutation by a four-colored noncrossing partition. This representation may be selected in a unique way for permutations con...

متن کامل

CFD analysis of natural convection heat transfer in a square cavity with partitions utilizing Al2O3 nanofluid

In the present study, natural convective heat transfer in a partitioned square cavity utilizing nanofluids is studied. The vertical left and right walls are considered as the hot and cold walls, respectively and the partitions assumed to be adiabatic. The nanofluid used in this study is Al2O3 with the volume fraction of 20%. It is assumed that nanofluid is a single phase f...

متن کامل

CFD analysis of natural convection heat transfer in a square cavity with partitions utilizing Al2O3 nanofluid

In the present study, natural convective heat transfer in a partitioned square cavity utilizing nanofluids is studied. The vertical left and right walls are considered as the hot and cold walls, respectively and the partitions assumed to be adiabatic. The nanofluid used in this study is Al2O3 with the volume fraction of 20%. It is assumed that nanofluid is a single phase f...

متن کامل

How to count genus one partitions

We prove the conjecture by M. Yip stating that counting genus one partitions by the number of their elements and parts yields, up to a shift of indices, the same array of numbers as counting genus one rooted hypermonopoles. Our proof involves representing each genus one permutation by a four-colored noncrossing partition. This representation may be selected in a unique way for permutations cont...

متن کامل

Note on enumeration of partitions contained in a given shape

Carlitz, Handa, and Mohanty proved determinantal formulas for counting partitions contained in a fixed bounding shape by area. Gessel and Viennot introduced a combinatorial method for proving such formulas by interpreting the determinants as counting suitable configurations of signed lattice paths. This note describes an alternative combinatorial approach that uses sign-reversing involutions to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017